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Preface

The Trilinos Project is an effort to facilitate the design, development, integration and ongoing
support of mathematical software libraries. The goal of the Trilinos Project is to develop
algorithms and enabling technologies within an object-oriented software framework for the
solution of large-scale, complex multiphysics engineering and scientific applications. There
is an emphasis is on developing robust, scalable algorithms in a software framework, using
abstract interfaces for flexible interoperability of components while providing a full-featured
set of concrete classes that implement all the abstract interfaces.

This document introduces the use of Trilinos, Release 10.12.1 and subsequent minor re-
leases 10.12.X. The tutorial will not be updated for Release 11.0 and later releases. For more
current and complete information, please see instead the hands-on tutorial, which can be
found by looking in the documentation section of the Trilinos website. The material pre-
sented in this document includes, among others, the definition of distributed matrices and
vectors with Epetra, the iterative solution of linear systems with AztecOQO, incomplete fac-
torizations with IFPACK, multilevel and domain decomposition preconditioners with ML,
direct solution of linear system with Amesos, eigenvalues and eigenvectors computations with
Anasazi, and iterative solution of nonlinear systems with NOX.

This tutorial is an introduction to Trilinos, intended to help computational scientists
effectively apply the appropriate Trilinos package to their applications. Only a small subset
of all Trilinos packages are covered in this tutorial. Basic examples are presented that are fit
to be imitated.

The developers of each Trilinos package are acknowledged for providing excellent doc-
umentation and examples (and the code itself!), without which this document would have
never been possible. We also acknowledge the support of the ASCI and LDRD programs that
funded development of Trilinos, and the support of D-INFK department of the ETH Ziirich.

Oscar Chinellato (ETHZ/ICoS) and Jens Walter (ETHZ/ICOS) are acknowledged for the
KTEX macros and styles used to format this document.

Marzio Sala
Micheal Heroux
David Day

James Willenbring
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Introduction

Marzio Sala, Michael Heroux, David Day, James Willenbring

1.1 Getting Started

The Trilinos framework uses a two level software structure that connects a system of pack-
ages. A Trilinos package is an integral unit, usually developed to solve a specific task, by
a (relatively) small group of experts. Packages exist beneath the Trilinos top level, which
provides a common look-and-feel. Each package has its own structure, documentation and
set of examples, and it is possibly available independently of Trilinos. However, each package
is even more valuable when combined with other Trilinos packages.

Trilinos is a large software project, and currently about fifty packages are included. The
entire set of packages covers a wide range of algorithms and enabling technologies for the
solution of large-scale, complex multi-physics engineering and scientific problems, as well as
a large set of utilities to improve the development of software for scientific computing.

Clearly, a full understanding all the functionalities of the Trilinos packages requires time.
Each package offers sophisticated features, difficult to “unleash” at a first sight. Besides that,
a detailed description of each Trilinos package is beyond the scope of this document. For
these reasons, the goal of this tutorial is to ensure that users have the background to make
good use of the extensive documentation contained in each package.

We will describe the following subset of the Trilinos packages.

e Epetra. The package defines the basic classes for distributed matrices and vectors,
linear operators and linear problems. Epetra classes are the common language spoken
by all the Trilinos packages (even if some packages can “speak” other languages). Each
Trilinos package accepts as input Epetra objects. This allows powerful combinations
among the various Trilinos functionalities.

e Triutils. This is a collection of utilities that are useful in software development. Here,
we present a command line parser and a matrix generator, that are used throughout
this document to define example matrices.

e AztecOO. This is a linear solver package based on preconditioned Krylov methods.
Aztec users will find that AztecOO supports all the Aztec interfaces and functionality,
and also provides significant new functionality.

e Belos. Provides next-generation iterative linear solvers and a powerful linear solver
developer framework.
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e IFPACK. The package performs various incomplete factorizations, and is here used
with AztecOO.

e Teuchos. This is a collection of classes that can be essential for advanced code devel-
opment.

e ML. The algebraic multilevel and domain decomposition preconditioner package pro-
vides scalable preconditioning capabilities for a variety of problems. It is here used as
a preconditioner for AztecOO solvers.

e Amesos. The package provides a common interface to certain sparse direct linear
solvers (generally available outside the Trilinos framework), both sequential and parallel.

e Anasazi. The package provides a common interface to parallel eigenvalue and eigen-
vector solvers, for both symmetric and non-symmetric linear problems.

e NOX. This is a collection of nonlinear solvers, designed to be easily integrated into an
application and used with many different linear solvers.

e Zoltan. A toolkit of parallel services for dynamic, unstructured, and/or adaptive simu-
lations. Zoltan provides parallel dynamic load balancing and related services for a wide
variety of applications, including finite element methods, matrix operations, particle
methods, and crash simulations.

e Tpetra. Next-generation, templated version of Petra, taking advantage of the newer
advanced features of C++.

e Didasko. This package contains all the examples reported in this tutorial. The sources
of the examples can be found in the subdirectory
<your-trilinos-home>/packages/didasko/examples.

Table 1.1 gives a partial overview of what can be accomplished using Trilinos.

Remark 1. As already pointed out, Epetra objects are meant to be the “common language”
spoken by all the Trilinos packages, and are a natural starting point. For new users, Chapters
2-4 are a prerequisite to the later chapters. Chapters 6 is not essential to understand Trilinos,
but the functionalities there presented are used in this document as a starting point for many
examples. One of the classes described in Chapter 10, the Teuchos::ParameterList, is later
used in Chapters 11 and 12. Chapter 7 should be read before Chapters 9 and 11 (even if both
IFPACK and ML can be compiled and run without AztecOO).

The only prerequisites assumed in this tutorial are some familiarities with numerical meth-
ods for PDEs, and with iterative linear and nonlinear solvers. Although not strictly necessary,
the reader is assumed to have some familiarity with distributed memory computing and, to
a lesser extent, with MPI'.

Note that this tutorial is not a substitute for individual packages’ documentation. Also,
for an overview of all the Trilinos packages, the Trilinos philosophy, and a description of
the packages provided by Trilinos, the reader is referred to [HBH"03]. Developers should

L Although almost no explicit MPI instructions are required in a Trilinos code, the reader should be aware
of the basic concepts of message passing, like the definition of a communicator.
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also consider the Trilinos Developers’ Guide, which addresses many topics, including the
development tools used by Trilinos’ developers, and a description of how to include a new
package.

1.2 Installation

To obtain Trilinos, please follow the instructions at the Trilinos download page:
http://trilinos.sandia.gov/download

Trilinos has been compiled on a variety of architectures, including various flavors of Linux,
Sun Solaris, SGI Irix, DEC, Mac OSX, IBM AIX, ASC Red Storm, and others. Trilinos has
been designed to support parallel applications. However, it also compiles and runs on serial
computers. An introduction to Trilinos and a list of FAQs may be found at the web pages:

http://trilinos.sandia.gov/getting_started.html
http://trilinos.sandia.gov/faqg.html

After obtaining Trilinos, the next step is its compilation. Instructions for building Trilinos
are available online:

http://trilinos.sandia.gov/build_instructions.html

1.3 Copyright and Licensing of Trilinos

Trilinos is released under the Lesser GPL GNU Licence.

Trilinos is copyrighted by Sandia Corporation. Under the terms of Contract DE-AC04-
94AL85000, there is a non-exclusive license for use of this work by or on behalf of the U.S.
Government. Export of this program may require a license from the United States Govern-
ment.

NOTICE: The United States Government is granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable worldwide license in ths data to reproduce, prepare
derivative works, and perform publicly and display publicly. Beginning five (5) years from July
25, 2001, the United States Government is granted for itself and others acting on its behalf
a paid-up, nonexclusive, irrevocable worldwide license in this data to reproduce, prepare
derivative works, distribute copies to the public, perform publicly and display publicly, and
to permit others to do so.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED STATES DE-
PARTMENT OF ENERGY, NOR SANDIA CORPORATION, NOR ANY OF THEIR EM-
PLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS,
OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY
OWNED RIGHTS.

Some parts of Trilinos are dependent on a third party code. Each third party code comes
with its own copyright and/or licensing requirements. It is responsibility of the user to
understand these requirements.
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1.4 Programming Language Used in this Tutorial

Trilinos is written in C++ (for most packages), and in C. Some interfaces are provided to
FORTRAN codes (mainly BLAS and LAPACK routines). Even if limited support is included
for C programs (and a more limited for FORTRAN code), to unleash the full power of Trilinos
we recommend C++. All the example programs contained in this tutorial are in C++; some
packages (like ML) contain examples in C.

1.5 Referencing Trilinos
The Trilinos project can be referenced by using the following BiBTeX citation information:

@techreport{Trilinos-Overview,

title = "{An Overview of Trilinos}",

author = "Michael Heroux and Roscoe Bartlett and Vicki Howle
Robert Hoekstra and Jonathan Hu and Tamara Kolda and
Richard Lehoucq and Kevin Long and Roger Pawlowski and

Eric Phipps and Andrew Salinger and Heidi Thornquist and
Ray Tuminaro and James Willenbring and Alan Williams ",

institution = "Sandia National Laboratories",
number = "SAND2003-2927",
year = 2003}

Q@techreport{Trilinos-Dev-Guide,

title = "{Trilinos Developers Guidel}",

author = "Michael A. Heroux and James M. Willenbring and Robert Heaphy",
institution = "Sandia National Laboratories",

number = "SAND2003-1898",

year = 2003}

@techreport{Trilinos-Dev-Guide-II,

title = "{Trilinos Developers Guide Part II: ASCI Software Quality
Engineering Practices Version 1.0}",

author = "Michael A. Heroux and James M. Willenbring and Robert Heaphy",

institution = "Sandia National Laboratories",
number = "SAND2003-1899",
year = 2003}

@techreport{Trilinos-Users-Guide,
title = "{Trilinos Users Guidel}",

author = "Michael A. Heroux and James M. Willenbring",
institution = "Sandia National Laboratories",

number = "SAND2003-2952",

year = 2003}

@techreport{Trilinos-Tutorial-5.0,
title = "{Trilinos Tutoriall}",
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author = "Marzio Sala and Michael A. Heroux and David M. Day",
institution = "Sandia National Laboratories",

number = "SAND2004-2189",

year = 2004}

The BiBTeX information is available at the web page

http://trilinos.sandia.gov/citing.html

1.6 A Note on the Directory Structure

Each Trilinos package in contained in the subdirectory
<your-trilinos-directory>/packages
Each package generally contains sources, examples, tests and documentation subdirectories:

<your-trilinos-directory>/packages/<package-name>/src
<your-trilinos-directory>/packages/<package-name>/examples
<your-trilinos-directory>/packages/<package-name>/test
<your-trilinos-directory>/packages/<package-name>/doc

Developers’ documentation is written using Doxygen?. The Doxygen documentation, and
other available documentation, for each package is available online via

http://trilinos.sandia.gov/packages/<package-name>/documentation.html

The Doxygen documentation can also be generated from the source code directly when
accessing a version-controlled copy of the Trilinos source code. For some packages, Doxygen
documentation can also be generated from the distribution tarball.

For example, to create the documentation for Epetra, use the following commands:

$ cd <your-trilinos-home>/packages/epetra/doc
$ doxygen

Generally, both HTML and TEX documentation are created by Doxygen. The browser of
choice can be used to walk through the HTML documentation. To compile the IXTEX sources,
the commands are:

$ cd <your-trilinos-home>/packages/epetra/doc/latex
$ make

1.7 List of Trilinos Developers

A list of past and present Trilinos developers is available online at:

http://trilinos.sandia.gov/team.html

2Copyright (©1997-2003 by Dimitri van Heesch. More information can by found at the web address
http://www.stack.nl/ dimitri/doxygen/.
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Chapter 1.

Service provided/Task performed Package Tutorial

Advanced serial dense or sparse matrices: Epetra Chapter 3

Advanced utilities for Epetra vectors and sparse | EpetraExt —

matrices:

Templated distributed vectors and sparse matri- | Tpetra Chapter 16

ces:

Distributed sparse matrices: Epetra —

Solve a linear system with preconditioned | AztecOO, Be- | Chapters 7, 8

Krylov accelerators, CG, GMRES, Bi-CGSTAB, | los

TFQMR:

Incomplete Factorizations: AztecOOQO, Chapter 9
IFPACK

Multilevel preconditioners: ML Chapter 11

“Black-box” smoothed aggregation precondi- | ML Section 11.4

tioners:

One-level Schwarz preconditioner (overlapping | AztecOO, Chapter 9

domain decomposition): IFPACK

Two-level Schwarz preconditioner, with coarse | AztecOO+ML | Section 11.5

matrix based on aggregation:

Systems of nonlinear equations: NOX Chapter 14

Interface with various direct solvers, as UMF- | Amesos Chapter 12

PACK, MUMPS, SuperLU_DIST and ScaLA-

PACK :

Eigenvalue problems for sparse matrices: Anasazi Chapter 13

Complex linear systems (using equivalent real | Komplex* —

formulation):

Segregated and block preconditioners (e.g., in- | Meros* -

compressible Navier-Stokes equations):

Light-weight interface to BLAS and LAPACK: | Epetra Chapter 3

Templated interface to BLAS and LAPACK, | Teuchos Section 10.5

arbitrary-precision arithmetic, parameters’ list,

smart pointers:

Definition of abstract interfaces to vectors, lin- | Thyra* —

ear operators, and solvers:

Generation of test matrices Triutils Section 6.2

Table 1.1: Partial overview of intended uses of Trilinos. *: not covered in this tutorial.
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Working with Epetra Vectors

Marzio Sala, Michael Heroux, and David Day.

A vector is a fundamental data structure required by almost all numerical methods.
Within the Trilinos framework, vectors are usually constructed starting from Epetra
classes.

An Epetra vector may store either double-precision values (like the solution of a PDE
problem, the right-hand side of a linear system, or nodal coordinates), or integer data
values (such as a set of indexes or global IDs).

An Epetra vector may be either serial or distributed. Serial vectors are usually small, so
that it is not convenient to distribute them across the processes. Possibly, serial vectors
are replicated across the processes. On the other hand, distributed vectors tend to be
significantly larger, and therefore their elements are distributed across the processors.
In this latter case, users must specify the partition they intend to use. In Epetra, this
is done by specifying a communicator (introduced in Section 2.1) and an Epetra object
called map (introduced in Section 2.2). A map is basically a partitioning of a list of
global IDs.

During the Chapter, the user will be introduced to:
e The fundamental Epetra communicator object, Epetra_Comm (in Section 2.1);
e The Epetra_Map object (in Section 2.2);

e The creation and assembly of Epetra vectors (in Sections 2.3 and 2.4). The
sections also present common vector operations, such as dot products, fill with
constant or random values, vector scalings and norms;

e A tool to redistributing vectors across processes (in Section 2.5).

2.1 Epetra Communicator Objects

The Epetra_Comm virtual class is an interface that encapsulates the general information and
services needed for the other Epetra classes to run on serial or parallel computer. An Epe-
tra_Comm object is required for building all Epetra_Map objects, which in turn are required
for all other Epetra classes.

Epetra_Comm has two basic concrete implementations:

o Epetra_SerialComm (for serial executions);

13
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o Epetra_MpiComm (for MPI distributed memory executions).

For most basic applications, the user can create an Epetra_Comm object using the follow-
ing code fragment:

#include "Epetra_ConfigDefs.h"
#ifdef HAVE_MPI
#include "mpi.h"
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
// .. other include files and others ...
int main( int argv, char *argv[]) {
// .. some declarations here ...
#ifdef HAVE_MPI
MPI_Init(&argc, &argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD) ;
#else
Epetra_SerialComm Comm;
#endif
// ... other code follows ...

Note that the MPI_Init () call and the

#ifdef HAVE_MPI
MPI_Finalize();
#endif

call, are likely to be the only MPI calls users have to explicitly introduce in their code.

Most of Epetra_Comm methods are similar to MPI functions. The class provides methods
such as MyPID(), NumProc(), Barrier (), Broadcast (), SumA11(), GatherAl1(), MaxA11(),
MinAl1(), ScanSum(). For instance, the number of processes in the communicator, NumProc,
and the ID of the calling process, MyPID, can be obtained by

int NumProc = Comm.NumProc();
int MyPID = Comm.MyPID();

The file didasko/examples/epetra/exl.cpp presents the use of some of the above intro-
duced functions. For a description of the syntax, please refer to the Epetra Class Documen-
tation.

2.2 Defining a Map

The distribution of a set of integer labels (or elements) across the processes is here called a
map, and its actual implementation is given by the Epetra_Map class (or, more precisely, by
an Epetra_BlockMap, from which Epetra_Map is derived). Basically, the class handles the
definition of the:

e global number of elements in the set (called NumGlobalElements);



2.2. Defining a Map 15

NumGlobaElementss ()
The total number of elements across all processes.

NumMyElementss ()
The number of elements on the calling process.

MinA11GID()
The minimum global index value across all processes.

MaxA11GID()
The maximum global index value across all processes.

MinMyGID()
The minimum global index value on the calling process.

MaxMyGID ()
The maximum global index value on the calling process.

MinLID(Q)
The minimum local index value on the calling process.

MaxLID()
The maximum local index value on the calling process.

LinearMap()

Returns true if the elements are distributed linearly across processes, i.e., process 0 gets
the first n/p elements, process 1 gets the next n/p elements, etc. where n is the number
of elements and p is the number of processes.

DistributedGlobal ()

Returns true if the element space of the map spans more than one process. This will be
true in most cases, but will be false in serial cases and for objects that are created via the
derived Epetra_LocalMap class.

Table 2.1: Some methods of the class Epetra_Map

e local number of elements (called NumMyElements);

e global numbering of all local elements (an integer vector of size NumMyElements, called
MyGlobalElements).

There are three ways to define an map. The easiest way is to specify the global number
of elements, and let Epetra decide:

Epetra_Map Map(NumGlobalElements,0,Comm) ;
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In this case, the constructor takes the global dimension of the vector, the base index!, and an
Epetra_Comm object (introduced in Section 2.1). As a result, each process will be assigned a
contiguous set of elements.

A second way to build the Epetra_Comm object is to furnish the local number of elements:

Epetra_Map Map(-1,NumMyElements,O,Comm) ;

This will create a vector of size > """~ ! NumMyElements. Each process will get a con-

tiguous set of elements. These two approached are coded in file
didasko/examples/epetra/ex2.cpp.

A third more involved way to create an Epetra_Map, is to specify on each process both
the number of local elements, and the global indexing of each local element. To understand
this, consider the following code. A vector of global dimension 5 is split among processes p0
and pl. Process p0 owns elements 0 an 4, and process pl elements 1, 2, and 3.

#include "Epetra_Map.h"
/...
MyPID = Comm.MyPID();
switch( MyPID ) {
case O:
MyElements = 2;
MyGlobalElements = new int[MyElements];
MyGlobalElements[0] = 0;
MyGlobalElements[1] = 4;
break;
case 1:
MyElements = 3;
MyGlobalElements = new int[MyElements];

MyGlobalElements[0] = 1;
MyGlobalElements[1] = 2;
MyGlobalElements[2] = 3;
break;

}

Epetra_Map Map(-1,MyElements,MyGlobalElements,0,Comm) ;

The complete code is reported in didasko/examples/epetra/ex3.cpp.
Once created, a Map object can be queried for the global and local number of elements,
using

int NumGlobalElements = Map.NumGlobalElements();
int NumMyElements = Map.NumMyElements();

and for the global ID of local elements, using

int * MyGlobalElements = Map.MyGlobalElements();

!The index base is the index of the lowest order element, and is usually, 0 for C or C++ arrays, and 1
for FORTRAN arrays. Epetra can indeed accept any number as index base. However, some other Trilinos
package may require a C-style index base.
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that returns a pointer to the internally stored global indexing vector, or, equivalently,

int MyGlobalElements [NumMyElements];
Map.MyGlobalElements (MyGlobalElements) ;

that copies in the user’s provided array the global indexing.

The class Epetra_Map is derived from Epetra_BlockMap. The class keeps information that
describes the distribution of objects that have block elements (for example, one or more con-
tiguous entries of a vector). This situation is common in applications like multiple-unknown
PDE problems. A variety of constructors are available for the class. An example of the use
of block maps is reported in didasko/examples/epetra/ex23.cpp.

Note that different maps may coexist in the same part of the code. The user may de-
fine vectors with different distributions (even for vectors of the same size). Two classes are
provided to transfer data from one map to an other: Epetra_ Import and Epetra_Export (see
Section 2.5).

Remark 2. Most Epetra objects overload the << operator. For example, to visualize infor-
mation about the Map, one can simply write

cout << Map;

We have constructed very basic map objects. More general objects can be constructed as
well. First, element numbers are only labels, and they do not have to be consecutive. This
means that we can define a map with elements 1, 100 and 10000 on process 0, and elements
2, 200 and 20000 on process 1. This map, composed by 6 elements, is perfectly legal. Second,
each element can be assigned to more than one process. Examples
didasko/examples/epetra/ex20.cpp and
didasko/examples/epetra/ex21.cpp can be used to better understand the potential of Epe-
tra_Maps.

Remark 3. The use of “distributed directory” technology facilitates arbitrary global ID sup-
port.

2.3 Creating and Assembling Serial Vectors

Within Epetra, it is possible to define sequential vectors for serial and parallel platforms. A
sequential vector is a vector which, in the opinion of the programmer, does not need to be
partitioned among the processes. Note that each process defines its own sequential vectors,
and that changing an element of this vector on this process will not directly affect the vectors
stored on other processes (if any have been defined).

The class Epetra_SerialDenseVector enables the construction and use of real-valued, dou-
ble precision dense vectors. The Epetra_SerialDenseVector class provides convenient vector
notation but derives all significant functionality from Epetra_SerialDenseMatrix class (see Sec-
tion 3.1). The following instruction creates a sequential double-precision vector containing
Length elements:

#include "Epetra_SerialDenseVector.h"
Epetra_SerialDenseVector DoubleVector (Length) ;
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Other constructors are available, as described in the Epetra Class Documentation. Integer
vectors can be created as

#include "Epetra_IntSerialDenseVector.h"
Epetra_SerialIntDenseVector IntVector(Length);

We recomment Epetra_SerialDenseVector and Epetra_SeriallntDenseVector instead of more
common C++ allocations (using new), because Epetra serial vectors automatically delete the
allocated memory when destructed, avoiding possible memory leaks.

The vector can be filled using the [] or () operators. Both methods return a reference
to the specified element of the vector. However, using (), bound checking is enforced. Using
using [], no bounds checking is done unless Epetra is compiled with
EPETRA_ARRAY_BOUNDS_CHECK.

Remark 4. To construct replicated Epetra objects on distributed memory machines, the user
may consider the class Epetra_LocalMap. The class constructs the replicated local objects and
keeps information that describe the distribution.

The file didasko/examples/epetra/ex4. cpp illustrates basic operations on dense vectors.

2.4 Creating and Assembling a Distributed Vector

A distributed object is an entity whose elements are partitioned across more than one process.
Epetra’s distributed objects (derived from the Epetra_DistObject class) are created from a
Map. For example, a distributed vector can be constructed starting from an Epetra_Map (or
Epetra_BlockMap) with an instruction of type

Epetra_Vector x(Map);

(We shall see that this dependency on Map objects holds for all distributed Epetra objects.)
This constructor allocates space for the vector and sets all the elements to zero. A copy
constructor may be used as well:

Epetra_Vector y(x);

A variety of sophisticated constructors are indeed available. For instance, the user can pass
a pointer to an array of double precision values,

Epetra_Vector x(Copy,Map,LocalValues);

Note the word Copy is input to the constructor. It specifies the Epetra_CopyMode, and refers
to many Epetra objects. In fact, Epetra allows two data access modes:

1. Copy: allocate memory and copy the user-provided data. In this mode, the user data is
not needed be the new Epetra_Vector after construction;

2. View: create a “view” of the user’s data. The user data is assumed to remain untouched
for the life of the vector (or modified carefully). From a data hiding perspective, View
mode is very dangerous. But is is often the only way to get the required performance.
Therefore, users are strongly encouraged to develop code using the Copy mode. Only use
View mode as needed in a secondary performance optimization phase. To use the View
mode, the user has to define the vector entries using a (double) vector (of appropriate
size), than construct an Epetra_Vector with an instruction of type
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Epetra_Vector z(View,Map,z_values);

where z_values is a pointer a double array containing the values for z.

To set a locally owned element of a vector, ont can use the [] operator, regardless of how
a vector has been created. For example,

x[i] = 1.0%i;

where i is in the local index space.

Epetra also defines some functions to set vector elements in local or global index space.
ReplaceMyValues or SumIntoMyValues will replace or sum values into a vector with a given
indexed list of values, with indexes in the local index space; ReplaceGlobalValues or
SumIntoGlobalValues will replace or sum values into a vector with a given indexed list of
values in the global index space (but locally owned). It is important to note that no process
may set vector entries locally owned by another process. In other words, both global and
local insert and replace functions refer to the part of a vector assigned to the calling process.
Intra-process communications can be (easily) performed using Import and Export objects,
covered in Section 2.5.

The user might need (for example, for reasons of computational efficiency) to work on
Epetra_Vectors as if they were double * pointers. File
didasko/examples/epetra/ex5.cpp
shows the use of ExtractCopy (). ExtractCopy does not give access to the vector elements,
but only copies them into the user-provided array. The user must commit those changes to
the vector object, using, for instance, ReplaceMyValues.

A further computationally efficient way, is to extract a “view” of the (multi-)vector internal
data. This can be done as follows, using method ExtractView(). Let z be an Epetra_Vector.

double * z_values;
z.ExtractView( &z_values );
for( int i=0 ; i<MyLength ; ++i ) z_values[i] *= 10;

In this way, modifying the values of z_values will affect the internal data of the Epetra_Vector
z. An example of the use of ExtractView is reported in file
didasko/examples/epetra/ex6.cpp.

Remark 5. The class Epetra_Vector is derived from Epetra_MultiVector. Roughly speaking, a
multi-vector is a collection of one or more vectors, all having the same length and distribution.
File didasko/examples/epetra/ex7.cpp illustrates use of multi-vectors.

The user can also consider the function ResetView, which allows a (very) light-weight
replacement of multi-vector values, created using the Epetra_DataMode View. Note that no
checking is performed to see if the values passed in contain valid data. This method can be
extremely useful in the situation where a vector is needed for use with an Epetra operator
or matrix, and the user is not passing in a multi-vector. Use this method with caution as it
could be extremely dangerous. A simple example is reported in
didasko/examples/epetra/ex8.cpp

It is possible to perform a certain number of operations on vector objects. Some of them
are reported in Table 2.2. Example didasko/examples/epetra/ex18.cpp works with some
of the functions reported in the table.
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int NumMyELements ()
returns the local vector length on the calling processor

int NumGlobalElements ()
returns the global length

int Norml(double *Result) const
returns the 1-norm (defined as )" |x;| (see also Norm2 and NormInf)

Normweigthed(double *Result) const
returns the 2-norm, defined as \/% > (wizs)?)

int Dot(const Epetra MultiVector A, double *Result) const
computes the dot product of each corresponding pair of vectors

int Scale(double ScalarA, const Epetra MultiVector &A
Replace multi-vector values with scaled values of A, this=ScalarA*A

int MinValue(double *Result) const
compute minimum value of each vector in multi-vector (see also MaxValue and MeanValue)

int PutScalar(double Scalar)
Initialize all values in a multi-vector with constant value

int Random()
set multi-vector values to random numbers

Table 2.2: Some methods of the class Epetra_Vector

2.5 Epetra_lmport and Epetra_Export classes

The Epetra_Import and Epetra_Export classes apply off-processor communication. Epe-
tra_Import and Epetra_Export are used to construct a communication plan that can be called
repeatedly by computational classes such the Epetra multi-vectors of the Epetra matrices.

Currently, those classes have one constructor, taking two Epetra_Map (or Epetra_BlockMap)
objects. The first map specifies the global IDs that are owned by the calling processor. The
second map specifies the global IDs of elements that we want to import later.

Using an Epetra_Import object means that the calling process knows what it wants to
receive, while an Epetra_Export object means that it knows what it wants to send. An
Epetra_Import object can be used to do an Export as a reverse operation (and equivalently
an Epetra_Export can be used to do an Import). In the particular case of bijective maps,
either Epetra_Import or Epetra_Export is appropriate.

To better illustrate the use of these two classes, we present the following example. Suppose
that the double-precision distributed vector x of global length 4, is distributed over two
processes. Process 0 own elements 0,1,2, while process 1 owns elements 1,2,3. This means
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that elements 1 and 2 are replicated over the two processes. Suppose that we want to bring all
the components of x to process 0, summing up the contributions of elements 1 and 2 from the
2 processes. This is done in the following example (c.f. didasko/examples/epetra/ex9.cpp).

int NumGlobalElements = 4; // global dimension of the problem

int NumMyElements; // local elements
Epetra_IntSerialDenseVector MyGlobalElements;

if ( Comm.MyPID() == 0 ) {
NumMyElements = 3;
MyGlobalElements.Size (NumMyElements) ;
MyGlobalElements[0] = 0;

MyGlobalElements[1] = 1;
MyGlobalElements[2] = 2;
} else {

NumMyElements = 3;
MyGlobalElements.Size (NumMyElements) ;
MyGlobalElements[0] = 1;

MyGlobalElements[1]
MyGlobalElements [2]

[
w N

// create a double-precision map
Epetra_Map Map(-1,MyGlobalElements.Length(),
MyGlobalElements.Values(),0, Comm);

// create a vector based on map

Epetra_Vector x(Map);

for( int i=0 ; i<NumMyElements ; ++i )
x[i] = 10*( Comm.MyPID()+1 );

cout << x;

// create a target map, in which all the elements are on proc 0
int NumMyElements_target;

if ( Comm.MyPID() == 0 )

NumMyElements_target = NumGlobalElements;
else
NumMyElements_target = O;

Epetra_Map TargetMap(-1,NumMyElements_target,0,Comm) ;
Epetra_Export Exporter(Map,TargetMap);

// work on vectors
Epetra_Vector y(TargetMap);
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y.Export (x,Exporter,Add) ;
cout << y;

Running this code with 2 processors, the output will be approximatively the following:

[msala:epetral> mpirun -np 2 ./ex3l.exe
Epetra::Vector

MyPID GID Value
0 0 10
0 1 10
0 2 10
Epetra::Vector
1 1 20
1 2 20
1 3 20
Epetra::Vector
Epetra::Vector
MyPID GID Value
0 0 10
0 1 30
0 2 30
0 3 20
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Epetra contains several matrix classes. Epetra matrices can be defined to be either serial
or distributed. A serial matrix could be the matrix corresponding to a given element in a
finite-element discretization, or the Hessemberg matrix in the GMRES method. Those
matrices are of (relatively) small size, so that it is not convenient to distribute them
across the processes.

Other matrices, e.g. the linear system matrices, must be distributed to obtain scalability.
For distributed sparse matrices, the basic Epetra class is Epetra_RowMatrix, meant for
double-precision matrices with row access. Epetra_RowMatrix is a pure virtual class.
The classes that are derived from Epetra_RowMatrix include:

e Epetra_CrsMatrix for point matrices;

e Epetra_VbrMatrix for block matrices (that is, for matrices which have a block
structure, for example the ones deriving from the discretization of a PDE problem
with multiple unknowns for node);

e Epetra_FECrsMatrix and Epetra_FEVbrMatrix for matrices arising from FE
discretizations.

The purpose of the Chapter is to review the allocation and assembling of different types
of matrices as follows:

e The creation of (serial) dense matrices (in Section 3.1);
e The creation of sparse point matrices (in Section 3.2);
e The creation of sparse block matrices (in Section 3.3);

e The insertion of non-local elements using finite-element matrices (in Section 3.4).

3.1 Serial Dense Matrices

Epetra supports sequential dense matrices with the class Epetra_SerialDenseMatrix. A pos-
sible way to create a serial dense matrix D of dimension n by m is

#include "Epetra_SerialDenseMatrix.h"
Epetra_SerialDenseMatrix D(n,m);

23
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One could also create a zero-size object,
Epetra_SerialDenseMatrix DQ);

and then shape this object:
D.Shape(n,m) ;

(D could be reshaped using ReShape().)

An Epetra_SerialDenseMatrix is stored in a column-major order in the usual FORTRAN
style. This class is built on the top of the BLAS library, and is derived from Epetra_Blas (not
covered in this tutorial). Epetra_SerialDenseMatrix supports dense rectangular matrices.

To access the matrix element at the i-th row and the j-th column, it is possible to use
the parenthesis operator (A(i,j)), or the bracket operator (A[j][i], note that i and j are
reversed)®.

As an example of the use of this class, in the following code we consider a matrix-matrix
product between two rectangular matrices A and B.

int NumRowsA = 2, NumColsA = 2;

2, NumColsB = 1;
Epetra_SerialDenseMatrix A, B;

A.Shape (NumRowsA, NumColsA);

B.Shape (NumRowsB, NumColsB);

// ... here set the elements of A and B
Epetra_SerialDenseMatrix AtimesB;
AtimesB.Shape (NumRowsA,NumColsB) ;
double alpha = 1.0, beta = 1.0;
AtimesB.Multiply(’N’,’N’,alpha, A, B, beta);
cout << AtimesB;

int NumRowsB

Multiply() performs the operation C' = aA + BB, where A replaced by AT if the first input
parameter is T, and B replaced by B” if the second input parameter is T. The corresponding
source code file is didasko/examples/epetra/ex10.cpp.

To solve a linear system with a dense matrix, one has to create an Epetra_SerialDenseSolver.
This class uses the most robust techniques available in the LAPACK library. The class is
built on the top of BLAS and LAPACK, and thus has excellent performance and numerical
stability?.

Another class, Epetra LAPACK, provides a “thin” layer on top of LAPACK, while Epe-
tra_SerialDenseSolver attempts to provide easy access to the more robust dense linear solvers.

Epetra LAPACK is preferable if the user seeks a convenient wrapper around the FOR-
TRAN LAPACK routines, and the problem at hand is well-conditioned. Instead, when the
user wants (or potentially wants to) solve ill-conditioned problems or favors a more object-
oriented interface, then we suggest Epetra_SerialDenseMatrix..

Given an Epetra_SerialDenseMatrix and two Epetra_SerialDenseVectors x and b, the gen-
eral approach is as follows:

!The bracket approach is in general faster, as the compiler can inline the corresponding function. Instead,
some compiler have problems to inline the parenthesis operator.

2 Another package, Teuchos, covered in Chapter 10, allows a templated access to LAPACK. ScaLAPACK
is supported through Amesos, see Chapter 12.
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Epetra_SerialDenseSolver Solver();
Solver.SetMatrix (D) ;
Solver.SetVectors(x,b);

Then, it is possible to invert the matrix with Invert (), solve the linear system with Solve(),
apply iterative refinement with ApplyRefinement(). Other methods are available; for in-
stance,

double rcond=Solve.RCOND();

returns the reciprocal of the condition number of matrix D (or -1 if not computed).
didasko/examples/epetra/ex11.cpp outlines some of the capabilities of the
Epetra_SerialDenseSolver class.

3.2 Distributed Sparse Matrices

Epetra provides an extensive set of classes to create and fill distributed sparse matrices.
These classes allow row-by-row or element-by-element constructions. Support is provided
for common matrix operations, including scaling, norm, matrix-vector multiplication and
matrix-multivector multiplication®.

Using Epetra objects, applications do not need to know about the particular storage
format, and other implementation details such as data layout, the number and location of
ghost nodes. Epetra furnishes two basic formats, one suited for point matrices, the other for
block matrices. The former is presented in this Section; the latter is introduced in Section 3.3.
Other matrix formats can be introduced by deriving the Epetra_RowMatrix virtual class as
needed.

Remark 6. Some numerical algorithms require the application of the linear operator only.
For this reason, some applications choose not to store a given matrixz. Epetra can handle this
situation using with the Epetra_Operator class; see Section 4.3.

Creating a sparse matrix may be more complicated than creating a dense matrix. It is
worthwhile to take steps to avoid unnecessary dynamic memory activities due to uncertainty
in the number of elements in each row.

As a general rule, the process of constructing a (distributed) sparse matrix is as follows:

allocate an integer array Nnz, whose length equals the number of local rows;

loop over the local rows, and estimate the number of nonzero elements of that row;

create the sparse matrix using Nnz;

fill the sparse matrix.

3Methods for matrix-matrix products are available through the EpetraExt package. Another alternative is
to use the efficient matrix-matrix product of ML, which requires ML_Operator objects. One may use light-
weight conversions to ML_Operator, perform the ML matrix-matrix product, then convert the result to Epetra
Matrix.
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virtual int Multiply (bool TransA, const Epetra MultiVector &X,
Epetra MultiVector &Y) const=0
Returns the result of a Epetra_RowMatrix multiplied by a Epetra_MultiVector X in Y.

virtual int Solve (bool Upper, bool Trans, bool UnitDiagonal, const

Epetra MultiVector &X, Epetra MultiVector &Y) const=0

Returns result of a local-only solve using a triangular Epetra_RowMatrix with Epe-
tra_MultiVectors X and Y.

virtual int InvRowSums (Epetra Vector &x) const=0
Computes the sum of absolute values of the rows of the Epetra_RowMatrix, results re-
turned in x.

virtual int LeftScale (const Epetra Vector &x)=0
Scales the Epetra_RowMatrix on the left with a Epetra_Vector x.

virtual int InvColSums (Epetra_Vector &x) const=0
Computes the sum of absolute values of the cols of the Epetra_RowMatrix, results returned
in x.

virtual int RightScale (const Epetra Vector &x)=0
Scales the Epetra_RowMatrix on the right with a Epetra_Vector x.

Table 3.1: Mathematical methods of Epetra RowMatrix

As an example, in this Section we will present how to construct a distributed (sparse)
matrix, arising from a finite-difference solution of a one-dimensional Laplace problem. This
matrix looks like:

oo —1
-1 2
The example illustrates how to construct the matrix, and how to perform matrix-vector

operations. The code can be found in didasko/examples/epetra/ex12.cpp.
We start by specifying the global dimension (here is 5, but can be any number):

int NumGlobalElements = 5;

We create a map (for the sake of simplicity linear), and define the local number of rows and
the global numbering for each local row:

Epetra_Map Map(NumGlobalElements,O,Comm) ;
int NumMyElements = Map.NumMyElements() ;
int * MyGlobalElements = Map.MyGlobalElements( );

In particular, we have that j=MyGlobalElements[i] is the global numbering for local node
i. Then, we have to specify the number of nonzeros per row. In general, this can be done in
two ways:
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virtual bool Filled () const=0

If FillComplete() has been called, this query returns true, otherwise it returns false.
virtual double NormInf () const=0

Returns the infinity norm of the global matrix.

virtual double NormOne () const=0

Returns the one norm of the global matrix.

virtual int NumGlobalNonzeros () const=0

Returns the number of nonzero entries in the global matrix.

virtual int NumGlobalRows () const=0

Returns the number of global matrix rows.

virtual int NumGlobalCols () const=0

Returns the number of global matrix columns.

virtual int NumGlobalDiagonals () const=0

Returns the number of global nonzero diagonal entries, based on global row/column index
comparisons.

virtual int NumMyNonzeros () const=0

Returns the number of nonzero entries in the calling processor’s portion of the matrix.
virtual int NumMyRows () const=0

Returns the number of matrix rows owned by the calling processor.

virtual int NumMyCols () const=0

Returns the number of matrix columns owned by the calling processor.

virtual int NumMyDiagonals () const=0

Returns the number of local nonzero diagonal entries, based on global row/column index
comparisons.

virtual bool LowerTriangular () const=0

If matrix is lower triangular in local index space, this query returns true, otherwise it
returns false.

virtual bool UpperTriangular () const=0

If matrix is upper triangular in local index space, this query returns true, otherwise it
returns false.

virtual const Epetra Map & RowMatrixRowMap () const=0

Returns the Epetra_Map object associated with the rows of this matrix.

virtual const Epetra Map & RowMatrixColMap () const=0

Returns the Epetra_Map object associated with the columns of this matrix.

virtual const Epetra_Import * RowMatrixImporter () const=0

Returns the Epetra_Import object that contains the import operations for distributed
operations.

Table 3.2: Attribute access methods of Epetra RowMatrix
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e Furnish an integer value, representing the number of nonzero element on each row (the
same value for all the rows);

e Furnish an integer vector NumNz, of length NumMyElements (), containing the nonzero
elements of each row.

The first approach is trivial: the matrix is created with the simple instruction
Epetra_CrsMatrix A(Copy,Map,3);

(The Copy keyword is explained in Section 2.4.) In this case, Epetra considers the number 3
as a “suggestion,” in the sense that the user can still add more than 3 elements per row (at
the price of a possible performance decay). The second approach is as follows:

int * NumNz = new int[NumMyElements];
for( int i=0 ; i<NumMyElements ; i++ )
if ( MyGlobalElements[i]==0 ||
MyGlobalElements[i] == NumGlobalElements-1)
NumNz[i] = 2;
else
NumNz[i] = 3;

We are building a tridiagonal matrix where each row has (-1 2 -1). Here NumNz[i] is the
number of nonzero terms in the i-th global equation on this process (2 off-diagonal terms,
except for the first and last equation).

Now, the command to create an Epetra_CsrMatrix is

Epetra_CrsMatrix A(Copy,Map,NumNz) ;

We add rows one at a time. The matrix A has been created in Copy mode, in a way that relies
on the specified map. To fill its values, we need some additional variables: let us call them
Indexes and Values. For each row, Indices contains global column indices, and Values the
correspondingly values.

double * Values = new double[2];
Values[0] = -1.0; Values[1] = -1.0;
int * Indices = new int[2];

double two = 2.0;

int NumEntries;

for( int i=0 ; i<NumMyElements; ++i ) {
if (MyGlobalElements[i]==0) {
Indices[0] = 1;
NumEntries = 1;
} else if (MyGlobalElements[i] == NumGlobalElements-1) {
Indices[0] = NumGlobalElements-2;
NumEntries = 1;

} else {
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
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NumEntries = 2;

}

A .InsertGlobalValues(MyGlobalElements[i], NumEntries,
Values, Indices);

// Put in the diagonal entry

A.InsertGlobalValues(MyGlobalElements[i], 1, &two,
MyGlobalElements+i) ;

}

Note that column indices have been inserted using global indices (but a method called
InsertMyValues can be used as well) . Finally, we transform the matrix representation
into one based on local indexes. The transformation in required in order to perform efficient
parallel matrix-vector products and other matrix operations.

A.FillComplete();

This call to FillComplete () will reorganize the internally stored data so that each process
knows the set of internal, border and external elements for a matrix-vector product of the
form B = AX. Also, the communication pattern is established. As we have specified just
one map, Epetra considers that the the rows of A are distributed among the processes in the
same way of the elements of X and B. Although standard, this approach is only a particular
case. Epetra allows the user to handle the more general case of a matrix whose Map differs
from that of X and that of B. In fact, each Epetra matrix is defined by four maps:

e Two maps, called RowMap and ColumnMap, define the sets of rows and columns of the
elements assigned to a given processor. In general, one processor cannot set elements
assigned to other processors®. RowMap and ColumnMap define the pattern of the
matrix, as it is used during the construction. They can be obtained using the methods
RowMatrixRowMap () and RowMatrixColMap() of the Epetra_RowMatrix class. Usually,
as a ColumnMap is not specified, it is automatically created by Epetra. In general

RowMap and ColumnMap can differ.

e DomainMap and RangeMap define, instead, the parallel data layout of X and B, re-
spectively. Note that those two maps can be completely different from RowMap and
ColumnMap, meaning that a matrix can be constructed using a certain data distribu-
tion, then used on vectors with another data distribution. DomainMap and RangeMap
can differ. Maps can be obtained using the methods DomainMap() and RangeMap ().

The potential of the approach are illustated by the example file
didasko/examples/epetra/ex24.cpp. In this example, to be run using two processors, we
build two maps: MapA will be used to construct the matrix, while MapB to define the parallel
layout of the vectors X and B. For the sake of simplicity, A is diagonal.

Epetra_CrsMatrix A(Copy,MapA,MapA,1);

As usual in this Tutorial, the integer vector MyGlobalElementsA contains the global ID of
local nodes. To assemble A, we cycle over all the local rows (defined by MapA):

4Some classes, derived from the Epetra_RowMatrix, can perform data exchange; see for instance Epe-
tra_ FECrsMatrix or Epetra_ FEVbrMatrix.
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for( int i=0 ; i<NumElementsA ; ++i ) {
double one = 2.0;
int indices = MyGlobalElementsA[i];
A.InsertGlobalValues(MyGlobalElementsA[i], 1, &one, &indices );
+

Now, as both X and B are defined using MapB, instead of calling FillComplete (), invoke
A.FillComplete (MapB,MapB) ;
Now, we can create X and B as vectors based on MapB, and perform the matrix-vector product:

Epetra_Vector X(MapB); Epetra_Vector B(MapB);
A Multiply(false,X,B);

Remark 7. Although presented for Epetra_CrsMatriz objects, the distinction between RowMap,
ColMap, DomainMap, and RangeMap holds for all classed derived from Epetra_RowMatrix.

Example didasko/examples/epetra/ex14.cpp shows the use of some of the methods
of the Epetra_CrsMatrix class. The code prints out information about the structure of the
matrix and its properties. The output will be approximatively as reported here:

[msala:epetral> mpirun -np 2 ./exl4
**%*x general Information about the matrix

Number of Global Rows = 5
Number of Global Cols = 5

is the matrix square = yes

[ 1Al _\in